V-kosmose.com

Физический маятник

Физика > Физический маятник

Как выглядят колебания и период физического маятника. Узнайте про период колебаний, уравнение и формулу физического маятника, вращательный момент и инерцию.

Период у физического маятника находится в зависимости от момента инерции точки поворота и дистанции к центру масс.

Задача обучения

  • Вычислить параметры, воздействующие на период физического маятника.

Основные пункты

  • Физический маятник – обобщенный случай простого. Представлен любым твердым телом, осуществляющим колебания вокруг точки поворота.
  • В случае небольших амплитуд период основывается исключительно на моменте инерции вокруг точки поворота и дистанции от оси вращения к центру масс:
  • На период колебания маятника не влияет общая масса твердого объекта и массовое распределение. Изменение формы, размера и распределения массы повлияет на момент инерции и период.

Термины

  • Физический маятник – стержень или нить не лишены массы и способны увеличивать свой размер.
  • Массовое распределение – пространственное распределение и вычисление центра масс в объекте.

Физический маятник

Простой маятник представлен подвешенным грузом к безмассовой нити или стержню, лишенным трения. Здесь можно не учитывать эффекты от нити. А вот в физическом маятнике нить приобретает вес и способна растягиваться. Тогда период зависит от момента инерции вокруг точки поворота.

Гравитация влияет сквозь центр масс твердого тела. Тогда длина маятника приравнивается к линейной дистанции между осью вращения и центром массы (h).

Уравнение вращательного момента:

τ = Iα (α – угловое ускорение, τ – вращательный момент, I – момент инерции).

Гравитация создает вращательный момент:

τ = mghsinθ (h – дистанция от центра масс к точке поворота, а θ – угол от вертикали).

То есть при небольшом угловом приближении:

Та же форма, что и у обычного простого маятника, где период:

И частота физического маятника:

Если мы располагаем моментом инерции, то можем вычислить период у физического маятника. Рассмотрим однородный стержень, повернутый из рамы. Центр масс расположен на дистанции L/2 от точки подвеса:

h = L/2.

Момент инерции жесткого стержня вокруг его центра:

Также нужно выявить момент инерции относительно точки поворота, а не центра масс, поэтому применим теорему о параллельной оси:

Добавим результат к уравнению за период:

Только отметьте, что период физического маятника все еще зависит от массы. Зато лишен влияния массового распределения твердого тела. Перемены в форме, размере или распределении массы повлияют и на момент инерции, а это изменит период.


Раздел Физика

Введение
Закон Гука
Периодическое движение
Демпфированные и управляемые колебания
Волны
Поведение и взаимодействие волн
Волны на струнах