V-kosmose.com

Третий закон Кеплера

Физика > Третий закон Кеплера
[ctu_ultimate_oxi id="10"]


Суть третьего закона Кеплера движения планет по орбите простыми словами – формула и формулировка: применение в астрономии, рисунок орбиты, роль законов Ньютона.

Третий закон Кеплера

Квадрат орбитального периода расположен в прямой пропорциональности кубу орбитальной полуоси. Третий закон Кеплера опубликовали в 1619 году. Отображает связь между дистанцией планет к Солнцу и их орбитальными периодами. В формуле выражается как P2œa3, где Р – орбитальный период планеты, а – полуосновная ось.

Третий закон Кеплера

Третий закон Кеплера

Квадрат орбитального периода расположен в прямой пропорциональности кубу орбитальной полуоси.

Постоянная пропорциональности

Кеплер создал этот закон во время его попытки понять «музыку сфер», поэтому раньше он именовался гармоническим законом.

Вывод Третьего закона Кеплера

Можно добыть его из законов движения Ньютона и универсального закона тяготения. Начнем с круговой орбиты малой массы вокруг большой. Гравитация отображает центростремительную силу к m. Приступим со второго закона Ньютона:

Fnet = mac = m • (v²/r)

Читая сила на массу дает гравитацию, поэтому подставляем ее для Fnet:

Масса m сокращается:

В этом месте все массы m падают с тем же ускорением. Мы видим, что при указанном радиусе орбиты всех масс перемещаются с одной скоростью. Чтобы вывести Третий закон Кеплера, нужно добыть период P:

Подставляем в предыдущее:

Решение для P2 :

Используя индексы для двух разных спутников, можно получить:

Это Третий закон Кеплера. Не забывайте, что он срабатывает только для сравнения спутников одного родительского тела, так как М отменяется.

Теперь посмотрим, что будет с P2 = 4π2 GM/r3 для отношения r³/P² . Его можно использовать для вычисления массы родительского тела:

Если r и P известны, то можно найти M главного тела.


Раздел Физика

Введение в равномерное круговое движение и гравитацию
Неравномерное круговое движение
Скорость, ускорение и сила
Типы сил в природе
Закон универсальной гравитации Ньютона
Законы Кеплера
Гравитационно потенциальная энергия
Энергосбережение
Угловые и линейные величины
Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5
(2 оценок, среднее: 4,50 из 5)