Гироскопы: принцип работы и прецессия
V-kosmose.com

Гироскопы

Физика > Гироскопы

Гироскоп – вращающееся колесо или диск, где ось свободна для любой ориентации.

Задача обучения

  • Сравните концепцию вращающегося колеса с гироскопом.

Основные пункты

  • Вращательный момент расположен перпендикулярно плоскости, созданной r и F. Сожмите пальцы правой руки в направлении F и ваш большой укажет на нужное направление.
  • Получается, что сторона вращательного момента сходится с угловым.
  • Гироскоп прецессирует вокруг вертикальной оси, потому что вращательный момент к L установлен всегда горизонтально и перпендикулярно. Если гироскоп не вращается, то наделяется угловым моментом в направлении вращательного и совершает обороты вокруг горизонтальной оси.

Термины

  • Вращательный момент – вращательный эффект силы, измеряемый в ньютонах на метр.
  • Правило правой руки – направление для угловой скорости ω и момента L, на который указывает большой палец правой руки, когда вы зажимаете пальцы в направлении вращения.
  • Универсальный шарнир – устройство для приостановки чего-либо (например, корабельного компаса, чтобы он оставался на уровне).

Гироскоп – устройство для измерения или поддержания ориентации, основывающееся на принципах углового момента. Это вращающееся колесо или диск, чья ось выступает свободной для любой ориентации. Она практически фиксирована, потому что установка в универсальном шарнире сводит внешний вращательный момент к минимуму.

Как это работает?

Давайте рассмотрим принцип работы гироскопа. Вращательный момент: измеряет угловой момент по формуле τ = ΔL/Δt.

Мы видим, что направление ΔL сходится с направленностью создающего его вращательного момента. Направление можно вывести, воспользовавшись правилом правой руки: пальцы ладони зажимаются в сторону вращения или силы, а большой палец показывает на угловой момент или скорость.

В (а) вращательный момент расположен перпендикулярно плоскости, созданной r и F (сюда указывает ваш большой палец, если вы скручиваете пальцы в направлении F). На (b) видно, что направление вращательного и углового моментов совпадает

Вращающееся колесо: изучите велосипедное колесо и спицы. При вращении угловой момент направлен к левой стороне девушки (на рисунке). Допустим, что мы повторяем движение. Она ожидает, что колесо будет вращаться в ту же сторону, на которую она влияет силой. Но все совсем наоборот. Силы создают вращательный момент, выступающий горизонтальным по отношению к человеку, и именно он формирует изменения в угловом моменте, перпендикулярном изначальному. Выходит, направление L изменилось, а величина нет.

Теперь направление углового момента больше склоняется к человеку, чем раньше. Так что ось колеса смещается перпендикулярно приложенной силе, а не в ожидаемом направлении.

На рисунке (a) девушка поднимает колесо правой рукой и толкает левой. Это создает вращательный момент прямо к ней. Он приводит к изменению углового момента ΔL в том же направлении. На (b) видна векторная диаграмма, изображающая добавление ΔL и L, создающих новый момент движения, указывающий больше на девушку. Колесо движется к ней, и выступает перпендикулярным силам, которые она применила

Гироскоп: точно также можно объяснить поведение гироскопа. В момент вращения на нем активируются две силы. Вращательный момент выступает перпендикулярным угловому, поэтому второй меняет направление, но не величину. Устройство прецессирует (прецессия гироскопа) вокруг вертикальной оси, потому что вращательный момент всегда горизонтален и перпендикулярен L. Если на гироскопе не наблюдается вращения, то он получает угловой момент в направлении вращательного (L = ΔL) и начинает совершать обороты вокруг горизонтальной оси.

В (а) вы видите, что силами на вращающемся гироскопе выступают его вес и опорная сила от стойки. Они создают горизонтальный вращательный момент, который вносит изменения в угловой (ΔL). На (b) ΔL и L добавляют для формирования нового момента импульса с одной величиной, но в ином направлении. Поэтому гироскоп прецессирует в указанном направлении, избавляясь от падения

Применение

Гироскопы выступают в качестве датчиков вращения. Поэтому их используют в инерциальных системах навигации, где не срабатывают магнитные компасы (как в космическом телескопе Хаббл) или не отвечают точности. Также они необходимы для стабилизации летательных аппаратов, вроде радиоуправляемых вертолетов или беспилотных.