V-kosmose.com

Мы обнаружили гравитационные волны и что дальше?

Мы обнаружили гравитационные волны и что дальше?

Теперь мы живем во Вселенной заполненной гравитационными волнами.

До исторического заявления в четверг утром от Национального Научного Фонда (ННФ) проводившего встречу в Вашингтоне, были только слухи, что Лазерная Интерферометрическая Гравитационно-волновая Обсерватория (ЛИГО) открыла ключевой компонент Общей Теории Относительности Альберта Эйнштейна, но теперь мы знаем, что реальность глубже, чем мы думали.

С удивительной четкостью, ЛИГО смогли «услышать» момент перед слиянием бинарной системы черных дыр (две черные дыры вращающиеся друг вокруг друга) в единое целое, создав настолько четкий гравитационно-волновой сигнал в соответствии с теоретической моделью, который не требовал обсуждения. ЛИГО стала свидетелем «перерождения» мощной черной дыры, случившейся около 1,3 миллиарда лет назад.

Гравитационные волны всегда были и всегда будут, проходя через нашу планету (в самом деле, проходя через нас), но только теперь мы знаем, как их находить. Теперь мы открыли глаза на различные космические сигналы, вибрации, вызванные известными энергетическими событиями, и наблюдаем рождение совершенно новой области астрономии.

Звук слияния двух черных дыр:

«Теперь мы можем слышать Вселенную»,- сказала Габриэла Гонсалес, физик и представитель ЛИГО, ВО время триумфального заседания в четверг.- «Обнаружение положило начало новой эры: Область гравитационной астрономии теперь реальность».

Наше место во Вселенной сильно меняется и это открытие может быть основополагающим, как открытие радиоволн и понимание того, что Вселенная расширяется.

Теория Относительности становится более обоснованной

Попытки объяснить, что такое гравитационные волны и почему они так важны, настолько же сложны, как уравнения их описывающие, но их обнаружение не только укрепляет теории Эйнштейна о природе пространства-времени, теперь у нас есть инструмент для зондирования части Вселенной, которая была невидима для нас. Теперь мы можем изучать космические волны, созданные самыми энергичными событиями, происходящими во Вселенной, и, возможно, использовать гравитационные волны для новых физических открытий и исследовать новые астрономические явления.

«Теперь мы должны доказать, что обладаем технологиями, чтобы пойти дальше открытия гравитационных волн, ведь это открывает перед нами много возможностей»,- сказал Льюис Ленер из Института Теоретической Физики в Онтарио, в интервью после заявление в четверг.

Исследование Ленера сфокусированы на плотных объектах (таких как черные дыры), создающих мощные гравитационные волны. Хотя он не связан с сотрудничеством ЛИГО, Ленер быстро осознал всю важность этого исторического открытия. «Не существует сигналов лучше»,- сказал он.

Открытие основано на трех путях, рассуждает он. Во-первых, теперь мы знаем, что гравитационные волны существуют, и мы знаем, как их обнаружить. Во-вторых, сигнал обнаруженный станциями ЛИГО 14 сентября 2015, является сильным свидетельством существования бинарной системы черных дыр, и каждая черная дыра весит несколько десятков масс солнца. Сигнал, это именно то, что мы ожидали увидеть в результате жесткого слияния двух черных дыр, одна весит в 29 раз больше Солнца, а другая в 36 раз. В-третьих, и возможно, самое важное, «возможность отправки в черную дыру», это определенно сильнейшее доказательство существования черных дыр.

Космическая интуиция

Этому событию сопутствовала удача, как и многим другим научным открытиям. ЛИГО является самым большими проектом, финансируемым Национальным Научным Фондом, который стартовал изначально в 2002 году. Оказалось, что после многих лет поиска неуловимого сигнала гравитационных волн, ЛИГО недостаточно чувствителен и в 2010 году обсерватории заморозили, на время работ международного сотрудничества по увеличению их чувствительности. Пять лет спустя, в сентябре 2015, родилась «улучшенная ЛИГО».

В то время, соучредитель ЛИГО и тяжеловес в теоретической физике Кип Торн был уверен в успехе ЛИГО, сказав BBC: «Мы здесь. Мы попали на поле большой игры. И вполне ясно, что мы приоткроем завесу тайны».- И был прав, через несколько дней после реконструкции, всплеск гравитационных волн прокатился по нашей планете, и ЛИГО было достаточно чувствительным, чтобы их обнаружить.

Эти слияния черных дыр, не считаются чем-то особенным; по приблизительным подсчетам такие события происходят каждые 15 минут где-нибудь во Вселенной. Но именно это слияние произошло в нужном месте (на расстоянии 1,3 миллиарда световых лет) в нужное время (1,3 миллиарда лет назад) для улавливания его сигнала обсерваториями ЛИГО. Это был чистый сигнал из Вселенной, и Эйнштейн его предсказал, а его гравитационные волны оказались реальны, описав космическое событие, в 50 раз мощнее мощности всех звезд во Вселенной вместе взятых. Этот огромный взрыв гравитационных волн был записан ЛИГО, как высокочастотный сигнал с линейной частотной модуляцией, в то время, когда черные дыры, двигаясь по спирали, слились в одно целое.

Для подтверждения распространения гравитационных волн, ЛИГО состоит из двух наблюдательных станций, одна в Луизиане, другая в Вашингтоне. Чтобы исключить ложные срабатывания, гравитационно-волновой сигнал должен быть обнаружен на обеих станциях. 14 сентября результат был получен сначала в Луизиане, а через 7 миллисекунд в Вашингтоне. Сигналы совпали, а с помощью триангуляции, физики смогли узнать, что они возникли в небесном пространстве Южного Полушария.

Гравитационные волны: чем они могут быть полезны?

Итак, у нас есть подтверждение сигнала слияния черных дыр, и что с того? Это историческое открытие, что вполне понятно – 100 лет назад Эйнштейн не мог и мечтать об обнаружении этих волн, но это все-таки случилось.

Общая теория относительности была одним из самых глубоких научных и философских осознаний 20-го века и составляет основу самых интеллектуальных исследований в реальности. В астрономии применения общей теории относительности ясны: от гравитационной линзы до измерения расширения Вселенной. Но совсем не ясно практическое применение теорий Эйнштейна, но большая часть современных технологий используют уроки из теории относительности в некоторых вещах, которые считаются простыми. Например, возьмем спутники глобальной навигации, они не будут достаточно точными, если не применять простую корректировку замедления времени (предсказанного теорией относительности).

Совершенно ясно, что у общей теории относительности есть применение в реальном мире, но когда Эйнштейн представил свою теорию в 1916 году, её применение было весьма сомнительным, что казалось очевидным. Он просто соединял Вселенную, в такую, какой он её видел, так и родилась общая теория относительности. А сейчас доказан ещё один компонент теории относительности, но как могут быть использованы гравитационные волны? Астрофизики и космологи определенно заинтригованы.

«После того, как мы собрали данные от пар черных дыр, которые будут играть роль маяков, разбросанных по Вселенной»,- сказал физик-теоретик Неил Турок, директор Института Теоретической Физики в четверг во время видео-презентации.- «Мы сможем измерить скорость расширения Вселенной, или количество темной энергии с чрезвычайной точностью, намного точнее, чем мы можем сегодня».

«Эйнштейн разработал свою теорию с некоторыми подсказками природы, но основанной на логической последовательности. Через 100 лет, вы видите очень точные подтверждения его прогнозов».

Более того, событие 14 сентября имеет некоторые особенности физики, которые ещё нужно будет исследовать. Например, Ленер заметил, что из анализа сигнала гравитационной волны, можно измерить «вращение» или угловой момент слияния черной дыры. «Если вы долго работали над теорией, то должны знать что у черной дыры очень, очень особенное вращение»,- сказал он.

Образование гравитационных волн при слияние двух черных дыр:

По какой-то причине, конечное вращение черной дыры медленнее чем ожидается, указывая на то, что черные дыры сталкиваются на низкой скорости, или они были в таком столкновении, которое вызвало совместный угловой момент, противодействующий друг другу. «Это очень интересно, почему природа это сделала?»,- сказал Ленер.

Эта недавняя загадка, может вернуть к некоторым основам физики, которые не были учтены, но, что более интригующе, может обнаружить «новую», необычную физику, которая не укладывается в общую теорию относительности. И это выявляет другие применения гравитационных волн: так как они создаются сильными гравитационными явлениями, у нас есть возможность зондировать эту среду издалека, с возможными сюрпризами на пути. Кроме того мы могли бы объединить наблюдения астрофизических явлений с электромагнитными силами, чтобы больше понять строение Вселенной.

Применение?

Естественно, после огромных объявлений, сделанных из комплекса научных открытий, много людей не входящих в научное сообщество, интересуются, как они могут повлиять на них. Глубина открытия может потеряться, что, безусловно, касается и гравитационных волн. Но рассмотрим другой случай, когда Вильгельм Рентген в 1895 году обнаружил рентгеновские лучи, во время опытов с электронно-лучевыми трубками, мало кто знает, что только через несколько лет, эти электромагнитные волны станут ключевым компонентом в повседневной медицине от постановки диагноза до лечения. Аналогично, первым экспериментальным созданием радиоволн в 1887 году, Генрих Герц подтвердил известные электромагнитные уравнения Джеймса Клерка Максвелла. Только через время в 90-х годах 20-го века, Гульельмо Маркони, который создал радиопередатчик и радиоприемник, доказал их практическое применение. Также, уравнения Шредингера, описывающие сложный мир квантовой динамики находят применение сейчас в разработке сверхбыстрых квантовых вычислений.

Инженер ЛИГО оценивает загрязнение интерферометра

Инженер ЛИГО оценивает загрязнение интерферометра

Все научные открытия полезны, и многие, в конечном счете, имеют повседневное применение, которое мы воспринимаем как должное. В настоящее время практическое применение гравитационных волн ограничивается астрофизикой и космологией – теперь у нас есть окно в «темной Вселенной», не видимой электромагнитному излучению. Без сомнения, ученые и инженеры найдут другое применение этим космическим пульсациям, помимо зондирования Вселенной. Тем не менее, для обнаружения этих волн, должны быть хорошие успехи в оптической технике в ЛИГО, в которых со временем будут появляться новые технологии.

Безусловно, обнаружение гравитационных волн – триумф человечества, который поможет изучить нашу Вселенную для будущих поколений. Это определенно золотой век для науки, в котором исторические открытия стали обычным делом. И у нас есть интеллектуальный потенциал для создания модели Вселенной, и чтобы экспериментально доказать нашу правоту.

Но для меня самое волнующее увидеть первые гравитационные карты космоса, где нанесены периодические гудения нейтронных звезд, и импульсивные извержения сверхновых, открывая новую Вселенную, полную космических волн.