Ядро кометы: описание, состав, фото
V-kosmose.com

Ядро кометы

Солнечная система > Кометы > Ядро кометы

Ядро кометы – в каком состоянии находится ядро: из чего состоит вещество, строение кометы, сравнение ядер комет, размер, происхождение, связь с облаком Оорта.

Давайте разберемся, в каком состоянии находится ядро кометы и из чего состоит. Ядром кометы именуют целостную центральную кометную часть, которую обычно называют грязным снежком или ледяным комом. Состав ядра кометы включает скалистые обломки, пыль и замороженные газы. При повышении температуры происходит газовая сублимация и формирование атмосферного слоя вокруг ядра – кома. На нее начинают влиять солнечное радиационное давление и ветер, из-за чего вытягивается длинный хвост. Показатель альбедо для типичного хвоста составляет 0.04 (темнее угля).

Миссии Розетты и Филы показали, что ядро кометы 67Р/Чурюмова-Герасименко не располагает магнитным полем, а значит магнетизм мог и не повлиять на раннее формирование планетезималей. Спектрограф также вычислил, что электроны в черте 1 км отвечают за процесс деградации воды и молекул углекислого газа, высвобожденных из ядра в кому.

В 2015 году исследователи сообщили, что спущенный зонд Филы вывил минимум 16 органических соединений, где 4 впервые замечены на кометах.

Сравнения ядер некоторых комет

Наименование Размеры, км Плотность, гр/см3 Масса, кг
Галлея 15 × 8 × 8 0.6 3×1014
Темпеля 1 7.6×4.9 0.62 7.9×1013
19P/Борелли 8×4×4 0.3 2×1013
81P/Вильда 5.5×4.0×3.3 0.6 2.3×1013
67P/Чурюмова-Герасименко 4,1×3,2×1,3 км (бо́льшая часть)
2,5×2,5×2,0 км (меньшая часть)
0.4 (1.0±0.1)×1013

Происхождение ядер комет

Полагают, что кометы (или их предшественники) появились в Солнечной системе за миллионы лет до планетарного формирования. Компьютерные модели показывают, что главные структурные особенности ядер могут объясняться небольшой скоростью аккреции слабых кометезималей. Сейчас большинство склоняются в гипотезе туманности, где кометы выступают остатками от изначальных планетарных строительных блоков.

Кометы могут прибывать из облака Оорта и рассеянного диска.

Сравнение размеров комет и некоторых других объектов

Сравнение размеров комет и некоторых других объектов

Размер ядер комет

Большая часть кометных ядер простирается на 16 км. Среди крупнейших комет стоит вспомнить C/2002 VQ94 (100 км), Хейла-Боппа (60 км), 29P (30.8 км), 109P/Свифта-Туттля (26 км) и 28P (21.4 км).

Ядро кометы Галлея (15 х 8 х 8 км) представлено равным соотношением льда и пыли.

В 2001 году Deep Space 1 осматривал ядро кометы Борелли (8 х 4 х 4 км) и выявил, что она достигает половины размера кометного ядра Галлея. Оно также напоминает картофелину и покрыто темным материалом.

Ядро Хейла-Боппа оценили в 20-60 км в диаметре. Она казалась яркой и показывалась без использования инструментов. Диаметр ядра P/2007 R5 достигает лишь 100-200 м.

Небольшие кентавры также вытягиваются на 250-300 км, среди которых выделяют три наиболее масштабных: Чарикло (258 км), Хирон (230 км) и 1995 SN55 (300 км).

Средняя плотность комет – 0.6 г/см3.

Состав ядер комет

Примерно 80% ядра кометы Галлея занято водяным льдом и 15% – замороженный монооксид углерода. Большая часть остатка – углекислый газ, аммиак и метан в замороженном состоянии. Исследователи думают, что остальные кометы по химическому составу напоминают комету Галлея, ядро которой также темное. Возможно, на поверхностном слое присутствует кора пыли и камней.

Анализ водяного пара Чурюмова-Герасименко показал существенное различие с земным. Соотношение дейтерия к водороду втрое выше, чем в земной воде. Поэтому вряд ли вода прибыла к нам с подобных комет. Можете рассмотреть, как выглядит фото ядра различных комет.

Изображение ядер некоторых комет

Вильда

Вильда 2

Темпеля 1

Темпеля 1

Комета Хартли

Хартли

Боррелли

Боррелли

Чурюмова-Герасименко

Чурюмова-Герасименко

*Нажмите на изображение, чтобы увеличить изображение

Структура комет

Некоторые из водяных паров в комете 67Р способны выйти из ядра, но примерно 80% из них реконструируются в слоях под поверхностью. А значит, тонкие и богатые на лед слои могли сформироваться из-за кометной активности и эволюции.

Зонд Филы показал, что пылевой слой способен достигать 20 см, а под ним скрываются твердый лед или же смесь льда и пылевых частиц. Прочность вырастает с приближением к ядру.

Максимально близкое изображение ядра кометы Чурюмова-Герасименко

Максимально близкое изображение ядра кометы Чурюмова-Герасименко

Расщепление комет

Процесс кометного расщепления показал, что ядра некоторых комет могут быть хрупкими. К примеру, это произошло в 1846 году с 3D/Биэлы, в 1992 году – Шумейкер-Леви 9, а также в 1995-2006 гг. – 73Р. Хотя об этом процессе сообщал еще Эфорус в 372-373 гг. до н.э.

Кометы 42Р и 53Р кажутся осколками раннего крупного объекта. Детальное изучение показало, что обе кометы приближались к Юпитеру в 1850 году и до этого момента их орбиты практически совпадали.

Альбедо ядер комет

Целостные ядра выступают одними из темнейших объектов в нашей системе. Джотто выявил, что ядро Галлея отражает лишь 4% лучей, а Deep Space 1 заметил, что комета Борелли отбивает только 2.5-3% поступающего света. Есть мнение, что материалом для темного поверхностного слоя выступают сложные органические соединения. Нагрев отключает летучие соединения, оставляя темные материалы.

Примерно 6% околоземных астероидов считаются ядрами погибших комет, лишенных дегазации. Среди таких объектов числятся 14827 Гипнос и 3552 Дон Кихот.

Комета D/1993 F2 (Шумейкеров — Леви)

Комета D/1993 F2 (Шумейкеров — Леви) была разорвана гравитацией Юпитера, после чего фрагменты упали на его поверхность

Обнаружение и изучение ядер комет

Первой приближенной миссией к ядру стал полет зонда Джотто. Впервые кораблю удалось подойти на удаленность в 596 км. Исследователи сумели рассмотреть струи, низкое поверхностное альбедо и присутствие органических соединений.

В период полета аппарат столкнулся с 12000 частичками и 1-граммовым осколком, который привел к временной потере связи. Оказалось, что комета Галлея выбрасывает в пространство 3 тонны материала в секунду.

Розетта и Филы показали, что ядро 67Р лишено магнитного поля, а значит магнетизм мог и не принимать активного участия в раннем формировании планетезималей. Да и результаты анализа говорили, что электроны отвечают за деградацию воды и молекул углекислого газа, а не солнечные фотоны.