V-kosmose.com

Зависимость сопротивления от температуры

Физика > Зависимость сопротивления от температуры

 

Узнайте, как сопротивление зависит от температуры: сравнение зависимости сопротивления материалов и удельного сопротивления от температуры, полупроводник.

Сопротивление и удельное сопротивление основываются на температуре, причем это несет линейный характер.

Задача обучения

  • Сравните температурную зависимость удельного и обычного сопротивления при больших и малых колебаниях.

Основные пункты

  • При перемене температуры на 100°C удельное сопротивление (ρ) изменяется с ΔT как: p = p0 (1 + αΔT), где ρ0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления.
  • При серьезных изменениях температуры заметно нелинейное изменение удельного сопротивления.
  • Сопротивление объекта выступает прямо пропорциональным удельному, поэтому демонстрирует такую же температурную зависимость.

Термины

  • Полупроводник – вещество с электрическими свойствами, которые характеризируют его как хорошего проводника или изолятора.
  • Температурный коэффициент удельного сопротивления – эмпирическая величина (α), описывающая изменение сопротивления или удельного сопротивления с температурным показателем.
  • Удельное сопротивление – степень, с которой материал сопротивляется электрическому потоку.

Сопротивление материалов основывается на температуре, поэтому получается проследить зависимость удельного сопротивления от температуры. Некоторые способны стать сверхпроводниками (нулевое сопротивление) при очень низких температурах, а другие – при высоких. Скорость вибрации атомов повышается на больших дистанциях, поэтому перемещающиеся сквозь металл электроны чаще сталкиваются и повышают сопротивление. Удельное сопротивление меняется с изменением температуры ΔT:

Сопротивление конкретного образца ртути достигает нуля при крайне низком температурном показателе (4.2 К). Если показатель выше этой отметки, то наблюдается внезапный скачек сопротивления, а далее практически линейный рост с температурой

p = p0 (1 + αΔT), где ρ0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления. При серьезных переменах температуры α способно меняться, а для поиска p возможно потребуется нелинейное уравнение. Именно поэтому иногда оставляют суффикс температуры, при которой изменилось вещество (к примеру, α15).

Стоит отметить, что α положительно для металлов, а удельное сопротивление растет вместе с температурным показателем. Обычно температурный коэффициент составляет +3 × 10-3 К-1 до +6 × 10-3 К-1 для металлов с примерно комнатной температурой. Есть сплавы, которые разрабатывают специально, чтобы снизить зависимость от температуры. Например, у манганина α приближено к нулю.

Не забывайте также, что α выступает отрицательным для полупроводников, то есть, их удельное сопротивление уменьшается с ростом температурной отметки. Это отличные проводники при высоких температурах, потому что повышенное температурное смешивание увеличивает количество свободных зарядов, доступных для транспортировки тока.

Сопротивление объекта также основывается на температуре, так как R0 располагается в прямой пропорциональности p. Мы знаем, что для цилиндра R = ρL/A. Если L и A сильно не изменяются с температурой, то R обладает одинаковой температурной зависимостью с ρ. Выходит:

R = R0 (1 + αΔT), где R0 – исходное сопротивление, а R – сопротивление после изменения температуры T.

Давайте рассмотрим сопротивление датчика температуры. Очень многие термометры функционируют по этой схеме. Наиболее распространенный пример – термистор. Это полупроводниковый кристалл с сильной зависимостью от температуры. Устройство небольшое, поэтому быстро переходит в тепловой баланс с человеческой частью, к которой прикасается.

Термометры основаны на автоматическом измерении температурного сопротивления термистора


Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5
(1 оценок, среднее: 5,00 из 5)