Расширение площади

Физика > Расширение площади

 

Объекты расширяются во всех измерениях. Их площади, объемы, а также длины возрастают с температурой.

Задача обучения

  • Вывести коэффициент теплового расширения площади в виде уравнения.

Основные пункты

  • Коэффициент теплового расширения площади объединяет изменение площади материала с переменами в температуре: 
  • Соотношение между площадью и коэффициентом линейного теплового расширения: αA = 2αL.
  • Коэффициент функционирует как приближение только в узком температурном интервале.

Термин

  • Коэффициент линейного теплового расширения – дробное изменение длины на градус перемены температуры.

Объекты расширяются во всех измерениях. Поэтому можно взять расширения для 1D и увеличить до 2-х или 3-х. Получается, что их площади, длины и объемы увеличиваются с температурой.

Поразмышляем

Представьте, что перед вами расположен прямоугольный металлический лист с круглым отверстием посредине. Если металл нагреть, то кусок увеличится из-за теплового расширения. Но что будет с отверстием? Хорошо, давайте возьмем точно такой же лист без отверстия. Нарисуйте на нем круг. Что вы видите? Да, он стал больше. Поэтому и отверстие также увеличится.

С ростом температурного показателя объекты расширяются во всех направлениях. На чертежах видно, что сплошные линии и расширенные границы с пунктирами отмечают исходные границы тел. (а) – Площадь возрастает, потому что растут длина и ширина. (b) – Если убрать заслонку, отверстие увеличится с повышением температуры

Коэффициент теплового расширения

Он соединяет перемены в площади с изменением температурного показателя. Это дробное изменение площади на градус перемены температуры. Опустив давление, получаем:

 – скорость изменения области на единицу перемены температуры). Перемены линейного вычисления: ΔA/A = αAΔT. Это уравнение функционирует, пока коэффициент линейного расширения не сильно изменится по сравнению с изменением температуры ΔT. Если так, формулу нужно интегрировать.

Соотношение с коэффициентом линейного теплового расширения

Для изотропных материалов коэффициент линейного теплового расширения достигает половины коэффициента площади. Чтобы получить соотношение, возьмем стальной квадрат с длиной сторон L. Исходная область – A = L2, а новая площадь после повышения температуры:

A + ΔA = (L + ΔL)2 = L2 + 2LΔL + (ΔL)2 ≈ L2 + 2LΔL = А + 2A • ΔL/L .

Аппроксимация осуществляется для малой ΔL, подверженной риску L. Поскольку ΔA/A = 2 ΔL/L, получаем αA = 2αL.



Космос | Лунный календарь | Знаки Зодиака | Натальная карта | Сонник | Телескопы
V-kosmose.com, 2014-2017 гг. Все права защищены.